## Assignment 6

## Exercise 1

Let $\left(W_{t}\right)_{t \geq 0}$ be a Brownian motion. For any $a>0$ consider the random times

$$
T_{a}:=\inf \left\{t>0: W_{t} \geq a\right\}, \bar{T}_{a}:=\inf \left\{t>0:\left|W_{t}\right| \geq a\right\}
$$

1) Show that these random times are $\mathbb{F}^{W, \mathbb{P}_{-}}$-stopping times.
2) Show that the Laplace transform of $T_{a}$ has the value

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\mu T_{a}\right)\right]=\exp (-a \sqrt{2 \mu}), \forall \mu>0
$$

and show that $\mathbb{P}\left[T_{a}<\infty\right]=1$.
Hint: consider the martingale $M_{t}^{\lambda}:=\exp \left(\lambda W_{t}-\frac{\lambda^{2}}{2} t\right)$ and use the optional sampling theorem.
4) Show that the Laplace transform of $\bar{T}_{a}$ has the value

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\mu \bar{T}_{a}\right)\right]=\frac{1}{\cosh (a \sqrt{2 \mu})}, \forall \mu>0
$$

## Exercise 2

Let $W$ be a Brownian motion on $[0, \infty)$ and $S_{0}>0, \sigma>0, \mu \in \mathbb{R}$ constants. The stochastic process $S=\left(S_{t}\right)_{t \geq 0}$ given by

$$
S_{t}:=S_{0} \exp \left(\sigma W_{t}+\left(\mu-\sigma^{2} / 2\right) t\right)
$$

is called geometric Brownian motion.

1) Prove that for $\mu \neq \sigma^{2} / 2$, we have

$$
\lim _{t \rightarrow \infty} S_{t}=+\infty, \mathbb{P} \text {-a.s., or } \lim _{t \rightarrow \infty} S_{t}=0, \mathbb{P} \text {-a.s. }
$$

When do the respective cases arise?
2) Discuss the behaviour of $S_{t}$ as $t \longrightarrow \infty$ in the case $\mu=\sigma^{2} / 2$.
3) For $\mu=0$, show that $S$ is a martingale, but not uniformly integrable.

## Exercise 3

Let $B$ be a standard Brownian motion. Let $S^{\star} \in[0,1]$ be the smallest $s \in[0,1]$ with $B_{s}=\sup _{t \in[0,1]} B_{t}$. Moreover, let $L:=\sup \left\{t \in[0,1]: B_{t}=0\right\}$ be the last time in the interval $[0,1]$ when $B$ is at 0 .

1) Show that $\mathbb{P}$-a.s., $B$ attains its maximum on the interval $[0,1]$ at a unique point.
2) Let $W$ be a standard Brownian motion, independent of $B$. Prove that whenever $s \in[0,1]$, we have

$$
\mathbb{P}\left[S^{\star}<s\right]=\mathbb{P}\left[\sup _{t \in[0, s]} B_{t}>\sup _{t \in[0,1-s]} W_{t}\right]
$$

3) Let $N$ and $N^{\prime}$ be random variables distributed as $N(0,1)$ and independent. Show that

$$
\mathbb{P}\left[S^{\star}<s\right]=\mathbb{P}\left[\sqrt{s}|N|>\sqrt{1-s}\left|N^{\prime}\right|\right]=2 \arcsin (\sqrt{s}) / \pi
$$

The law of $S^{\star}$ is called the Arcsine distribution.
4) Show also that

$$
\mathbb{P}[L<s]=\mathbb{P}\left[\sup _{t \in[0, s]} B_{t}>\sup _{t \in[0,1-s]} W_{t}\right] \text {, for } s \in[0,1],
$$

so that $L$ and $S^{\star}$ have the same law.

## Exercise 4

Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and $M_{t}:=\sup _{s \leq t} B_{s}$. Show that the joint distribution of the pair $\left(B_{t}, M_{t}\right)$ is absolutely continuous with density

$$
f_{t}(x, y):=\frac{2(2 y-x)}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{(2 y-x)^{2}}{2 t}\right) \mathbf{1}_{\{y \geq 0\}} \mathbf{1}_{\{x \leq y\}},(x, y) \in \mathbb{R}^{2}
$$

Hint: Show that
(i) for $y>0, x \leq y, \mathbb{P}\left[B_{t} \leq x, M_{t} \geq y\right]=\mathbb{P}\left[B_{t} \geq 2 y-x\right]$;
(ii) for $y>0, x \leq y$,

$$
\mathbb{P}\left[B_{t} \leq x, M_{t} \leq y\right]=\Phi\left(\frac{x}{\sqrt{t}}\right)-\Phi\left(\frac{x-2 y}{\sqrt{t}}\right)
$$

where $\Phi$ is the distribution function of a standard Gaussian random variable;
(iii) for $y>0, x \geq y$,

$$
\mathbb{P}\left[B_{t} \leq x, M_{t} \leq y\right]=\mathbb{P}\left[M_{t} \leq y\right]=\Phi\left(\frac{y}{\sqrt{t}}\right)-\Phi\left(-\frac{y}{\sqrt{t}}\right)
$$

and for $y \leq 0, \mathbb{P}\left[B_{t} \leq x, M_{t} \leq y\right]=0$.

